Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq12d Unicode version

Theorem psseq12d 3597
 Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypotheses
Ref Expression
psseq1d.1
psseq12d.2
Assertion
Ref Expression
psseq12d

Proof of Theorem psseq12d
StepHypRef Expression
1 psseq1d.1 . . 3
21psseq1d 3595 . 2
3 psseq12d.2 . . 3
43psseq2d 3596 . 2
52, 4bitrd 253 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  C.wpss 3476 This theorem is referenced by:  fin23lem32  8745  fin23lem34  8747  fin23lem35  8748  fin23lem41  8753  isf32lem5  8758  isf32lem6  8759  isf32lem11  8764  compssiso  8775  canthp1lem2  9052  chnle  26432 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-ne 2654  df-in 3482  df-ss 3489  df-pss 3491
 Copyright terms: Public domain W3C validator