Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2d Unicode version

Theorem psseq2d 3596
 Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypothesis
Ref Expression
psseq1d.1
Assertion
Ref Expression
psseq2d

Proof of Theorem psseq2d
StepHypRef Expression
1 psseq1d.1 . 2
2 psseq2 3591 . 2
31, 2syl 16 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  C.wpss 3476 This theorem is referenced by:  psseq12d  3597  php3  7723  inf3lem5  8070  infeq5i  8074  ackbij1lem15  8635  fin4en1  8710  chpsscon1  26422  chnle  26432  atcvatlem  27304  atcvati  27305  lsatcvat  34775 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-ne 2654  df-in 3482  df-ss 3489  df-pss 3491
 Copyright terms: Public domain W3C validator