MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssstrd Unicode version

Theorem psssstrd 3612
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 3609. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
psssstrd.1
psssstrd.2
Assertion
Ref Expression
psssstrd

Proof of Theorem psssstrd
StepHypRef Expression
1 psssstrd.1 . 2
2 psssstrd.2 . 2
3 psssstr 3609 . 2
41, 2, 3syl2anc 661 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  C_wss 3475  C.wpss 3476
This theorem is referenced by:  ackbij1lem15  8635  lsatssn0  34727  lsatexch  34768  lsatcvatlem  34774  lkrpssN  34888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-ne 2654  df-in 3482  df-ss 3489  df-pss 3491
  Copyright terms: Public domain W3C validator