![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > psstr | Unicode version |
Description: Transitive law for proper subclass. Theorem 9 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psstr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssss 3598 | . . 3 | |
2 | pssss 3598 | . . 3 | |
3 | 1, 2 | sylan9ss 3516 | . 2 |
4 | pssn2lp 3604 | . . . 4 | |
5 | psseq1 3590 | . . . . 5 | |
6 | 5 | anbi1d 704 | . . . 4 |
7 | 4, 6 | mtbiri 303 | . . 3 |
8 | 7 | con2i 120 | . 2 |
9 | dfpss2 3588 | . 2 | |
10 | 3, 8, 9 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 C_ wss 3475
C. wpss 3476 |
This theorem is referenced by: sspsstr 3608 psssstr 3609 psstrd 3610 porpss 6584 inf3lem5 8070 ltsopr 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-ne 2654 df-in 3482 df-ss 3489 df-pss 3491 |
Copyright terms: Public domain | W3C validator |