![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > psstrd | Unicode version |
Description: Proper subclass inclusion is transitive. Deduction form of psstr 3607. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
psstrd.1 | |
psstrd.2 |
Ref | Expression |
---|---|
psstrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psstrd.1 | . 2 | |
2 | psstrd.2 | . 2 | |
3 | psstr 3607 | . 2 | |
4 | 1, 2, 3 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 C. wpss 3476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-ne 2654 df-in 3482 df-ss 3489 df-pss 3491 |
Copyright terms: Public domain | W3C validator |