MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psstrd Unicode version

Theorem psstrd 3610
Description: Proper subclass inclusion is transitive. Deduction form of psstr 3607. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
psstrd.1
psstrd.2
Assertion
Ref Expression
psstrd

Proof of Theorem psstrd
StepHypRef Expression
1 psstrd.1 . 2
2 psstrd.2 . 2
3 psstr 3607 . 2
41, 2, 3syl2anc 661 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  C.wpss 3476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-ne 2654  df-in 3482  df-ss 3489  df-pss 3491
  Copyright terms: Public domain W3C validator