![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pwex | Unicode version |
Description: Power set axiom expressed in class notation. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
zfpowcl.1 |
Ref | Expression |
---|---|
pwex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfpowcl.1 | . 2 | |
2 | pweq 4015 | . . 3 | |
3 | 2 | eleq1d 2526 | . 2 |
4 | df-pw 4014 | . . 3 | |
5 | axpow2 4632 | . . . . . 6 | |
6 | 5 | bm1.3ii 4576 | . . . . 5 |
7 | abeq2 2581 | . . . . . 6 | |
8 | 7 | exbii 1667 | . . . . 5 |
9 | 6, 8 | mpbir 209 | . . . 4 |
10 | 9 | issetri 3116 | . . 3 |
11 | 4, 10 | eqeltri 2541 | . 2 |
12 | 1, 3, 11 | vtocl 3161 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 A. wal 1393
= wceq 1395 E. wex 1612 e. wcel 1818
{ cab 2442 cvv 3109
C_ wss 3475 ~P cpw 4012 |
This theorem is referenced by: pwexg 4636 p0ex 4639 pp0ex 4641 ord3ex 4642 abexssex 6782 fnpm 7447 canth2 7690 dffi3 7911 inf3lem7 8072 r1sucg 8208 r1pwOLD 8285 rankuni 8302 rankc2 8310 rankxpu 8315 rankmapu 8317 rankxplim 8318 r0weon 8411 aceq3lem 8522 dfac5lem4 8528 dfac2a 8531 dfac2 8532 dfac8 8536 dfac13 8543 ackbij1lem5 8625 ackbij1lem8 8628 ackbij2lem2 8641 ackbij2lem3 8642 fin23lem17 8739 domtriomlem 8843 dominf 8846 axdc2lem 8849 axdc3lem 8851 numthcor 8895 axdclem2 8921 alephsucpw 8966 dominfac 8969 canthp1lem1 9051 gchac 9080 intwun 9134 wunex2 9137 eltsk2g 9150 inttsk 9173 tskcard 9180 intgru 9213 gruina 9217 axgroth6 9227 npex 9385 axcnex 9545 pnfxr 11350 mnfxr 11352 ixxex 11569 prdsval 14852 prdsds 14861 prdshom 14864 ismre 14987 fnmre 14988 fnmrc 15004 mrcfval 15005 mrisval 15027 mreacs 15055 wunfunc 15268 catcfuccl 15436 catcxpccl 15476 lubfval 15608 glbfval 15621 isacs5lem 15799 issubm 15978 issubg 16201 cntzfval 16358 pmtrfval 16475 sylow1lem2 16619 lsmfval 16658 pj1fval 16712 issubrg 17429 lssset 17580 lspfval 17619 islbs 17722 lbsext 17809 lbsexg 17810 sraval 17822 aspval 17977 ocvfval 18697 cssval 18713 isobs 18751 islinds 18844 istopon 19426 tgdom 19480 fncld 19523 leordtval2 19713 cnpfval 19735 iscnp2 19740 kgenf 20042 xkoopn 20090 xkouni 20100 dfac14 20119 xkoccn 20120 prdstopn 20129 xkoco1cn 20158 xkoco2cn 20159 xkococn 20161 xkoinjcn 20188 isfbas 20330 uzrest 20398 acufl 20418 alexsubALTlem2 20548 tsmsval2 20628 ustfn 20704 ustn0 20723 ishtpy 21472 vitali 22022 sspval 25636 shex 26129 hsupval 26252 fpwrelmap 27556 fpwrelmapffs 27557 isrnsigaOLD 28112 dmvlsiga 28129 eulerpartlem1 28306 eulerpartgbij 28311 eulerpartlemmf 28314 coinflippv 28422 ballotlemoex 28424 kur14lem9 28658 mpstval 28895 mclsrcl 28921 mclsval 28923 heibor1lem 30305 heibor 30317 idlval 30410 mzpclval 30657 eldiophb 30690 rpnnen3 30974 dfac11 31008 rgspnval 31117 usgsizedg 32395 usgsizedgALT 32396 usgsizedgALT2 32397 issubmgm 32477 lincop 33009 bj-snglex 34531 psubspset 35468 paddfval 35521 pclfvalN 35613 polfvalN 35628 psubclsetN 35660 docafvalN 36849 djafvalN 36861 dicval 36903 dochfval 37077 djhfval 37124 islpolN 37210 pwinfi 37749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-pow 4630 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-in 3482 df-ss 3489 df-pw 4014 |
Copyright terms: Public domain | W3C validator |