![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pwfseq | Unicode version |
Description: The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.) |
Ref | Expression |
---|---|
pwfseq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 7542 | . . 3 | |
2 | 1 | brrelex2i 5046 | . 2 |
3 | domeng 7550 | . . 3 | |
4 | bren 7545 | . . . . . 6 | |
5 | harcl 8008 | . . . . . . . . . 10 | |
6 | infxpenc2 8420 | . . . . . . . . . 10 | |
7 | 5, 6 | ax-mp 5 | . . . . . . . . 9 |
8 | simpr 461 | . . . . . . . . . . . . . . . 16 | |
9 | oveq2 6304 | . . . . . . . . . . . . . . . . . 18 | |
10 | 9 | cbviunv 4369 | . . . . . . . . . . . . . . . . 17 |
11 | f1eq3 5783 | . . . . . . . . . . . . . . . . 17 | |
12 | 10, 11 | ax-mp 5 | . . . . . . . . . . . . . . . 16 |
13 | 8, 12 | sylib 196 | . . . . . . . . . . . . . . 15 |
14 | simpllr 760 | . . . . . . . . . . . . . . 15 | |
15 | simplll 759 | . . . . . . . . . . . . . . 15 | |
16 | biid 236 | . . . . . . . . . . . . . . 15 | |
17 | simplr 755 | . . . . . . . . . . . . . . . 16 | |
18 | sseq2 3525 | . . . . . . . . . . . . . . . . . 18 | |
19 | fveq2 5871 | . . . . . . . . . . . . . . . . . . . 20 | |
20 | f1oeq1 5812 | . . . . . . . . . . . . . . . . . . . 20 | |
21 | 19, 20 | syl 16 | . . . . . . . . . . . . . . . . . . 19 |
22 | xpeq12 5023 | . . . . . . . . . . . . . . . . . . . . 21 | |
23 | 22 | anidms 645 | . . . . . . . . . . . . . . . . . . . 20 |
24 | f1oeq2 5813 | . . . . . . . . . . . . . . . . . . . 20 | |
25 | 23, 24 | syl 16 | . . . . . . . . . . . . . . . . . . 19 |
26 | f1oeq3 5814 | . . . . . . . . . . . . . . . . . . 19 | |
27 | 21, 25, 26 | 3bitrd 279 | . . . . . . . . . . . . . . . . . 18 |
28 | 18, 27 | imbi12d 320 | . . . . . . . . . . . . . . . . 17 |
29 | 28 | cbvralv 3084 | . . . . . . . . . . . . . . . 16 |
30 | 17, 29 | sylib 196 | . . . . . . . . . . . . . . 15 |
31 | eqid 2457 | . . . . . . . . . . . . . . 15 | |
32 | eqid 2457 | . . . . . . . . . . . . . . 15 | |
33 | eqid 2457 | . . . . . . . . . . . . . . 15 | |
34 | eqid 2457 | . . . . . . . . . . . . . . 15 | |
35 | oveq2 6304 | . . . . . . . . . . . . . . . . 17 | |
36 | 35 | cbviunv 4369 | . . . . . . . . . . . . . . . 16 |
37 | mpteq1 4532 | . . . . . . . . . . . . . . . 16 | |
38 | 36, 37 | ax-mp 5 | . . . . . . . . . . . . . . 15 |
39 | eqid 2457 | . . . . . . . . . . . . . . 15 | |
40 | eqid 2457 | . . . . . . . . . . . . . . 15 | |
41 | 13, 14, 15, 16, 30, 31, 32, 33, 34, 38, 39, 40 | pwfseqlem5 9062 | . . . . . . . . . . . . . 14 |
42 | 41 | imnani 423 | . . . . . . . . . . . . 13 |
43 | 42 | nexdv 1884 | . . . . . . . . . . . 12 |
44 | brdomi 7547 | . . . . . . . . . . . 12 | |
45 | 43, 44 | nsyl 121 | . . . . . . . . . . 11 |
46 | 45 | ex 434 | . . . . . . . . . 10 |
47 | 46 | exlimdv 1724 | . . . . . . . . 9 |
48 | 7, 47 | mpi 17 | . . . . . . . 8 |
49 | 48 | ex 434 | . . . . . . 7 |
50 | 49 | exlimiv 1722 | . . . . . 6 |
51 | 4, 50 | sylbi 195 | . . . . 5 |
52 | 51 | imp 429 | . . . 4 |
53 | 52 | exlimiv 1722 | . . 3 |
54 | 3, 53 | syl6bi 228 | . 2 |
55 | 2, 54 | mpcom 36 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 E. wex 1612 e. wcel 1818
A. wral 2807 cvv 3109
C_ wss 3475 c0 3784 ~P cpw 4012 { csn 4029
<. cop 4035 U_ ciun 4330 class class class wbr 4452
e. cmpt 4510 We wwe 4842 con0 4883 suc csuc 4885 X. cxp 5002
`' ccnv 5003 dom cdm 5004 |` cres 5006
o. ccom 5008 -1-1-> wf1 5590 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
e. cmpt2 6298 com 6700
seqom cseqom 7131 cmap 7439
cen 7533 cdom 7534 OrdIso coi 7955 char 8003 |
This theorem is referenced by: pwxpndom2 9064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-har 8005 df-cnf 8100 df-card 8341 |
Copyright terms: Public domain | W3C validator |