![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pwfseqlem1 | Unicode version |
Description: Lemma for pwfseq 9063. Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015.) |
Ref | Expression |
---|---|
pwfseqlem4.g | |
pwfseqlem4.x | |
pwfseqlem4.h | |
pwfseqlem4.ps | |
pwfseqlem4.k | |
pwfseqlem4.d |
Ref | Expression |
---|---|
pwfseqlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwfseqlem4.d | . . 3 | |
2 | pwfseqlem4.g | . . . . . 6 | |
3 | 2 | adantr 465 | . . . . 5 |
4 | f1f 5786 | . . . . 5 | |
5 | 3, 4 | syl 16 | . . . 4 |
6 | ssrab2 3584 | . . . . . 6 | |
7 | pwfseqlem4.ps | . . . . . . 7 | |
8 | simprl1 1041 | . . . . . . 7 | |
9 | 7, 8 | sylan2b 475 | . . . . . 6 |
10 | 6, 9 | syl5ss 3514 | . . . . 5 |
11 | vex 3112 | . . . . . . 7 | |
12 | 11 | rabex 4603 | . . . . . 6 |
13 | 12 | elpw 4018 | . . . . 5 |
14 | 10, 13 | sylibr 212 | . . . 4 |
15 | 5, 14 | ffvelrnd 6032 | . . 3 |
16 | 1, 15 | syl5eqel 2549 | . 2 |
17 | pm5.19 360 | . . 3 | |
18 | pwfseqlem4.k | . . . . . . . . 9 | |
19 | 18 | adantr 465 | . . . . . . . 8 |
20 | f1f 5786 | . . . . . . . 8 | |
21 | 19, 20 | syl 16 | . . . . . . 7 |
22 | ffvelrn 6029 | . . . . . . 7 | |
23 | 21, 22 | sylancom 667 | . . . . . 6 |
24 | f1f1orn 5832 | . . . . . . . . 9 | |
25 | 19, 24 | syl 16 | . . . . . . . 8 |
26 | f1ocnvfv1 6182 | . . . . . . . 8 | |
27 | 25, 26 | sylancom 667 | . . . . . . 7 |
28 | f1fn 5787 | . . . . . . . . . . 11 | |
29 | 3, 28 | syl 16 | . . . . . . . . . 10 |
30 | fnfvelrn 6028 | . . . . . . . . . 10 | |
31 | 29, 14, 30 | syl2anc 661 | . . . . . . . . 9 |
32 | 1, 31 | syl5eqel 2549 | . . . . . . . 8 |
33 | 32 | adantr 465 | . . . . . . 7 |
34 | 27, 33 | eqeltrd 2545 | . . . . . 6 |
35 | fveq2 5871 | . . . . . . . . . . 11 | |
36 | 35 | eleq1d 2526 | . . . . . . . . . 10 |
37 | id 22 | . . . . . . . . . . . 12 | |
38 | 35 | fveq2d 5875 | . . . . . . . . . . . 12 |
39 | 37, 38 | eleq12d 2539 | . . . . . . . . . . 11 |
40 | 39 | notbid 294 | . . . . . . . . . 10 |
41 | 36, 40 | anbi12d 710 | . . . . . . . . 9 |
42 | fveq2 5871 | . . . . . . . . . . . 12 | |
43 | 42 | eleq1d 2526 | . . . . . . . . . . 11 |
44 | id 22 | . . . . . . . . . . . . 13 | |
45 | 42 | fveq2d 5875 | . . . . . . . . . . . . 13 |
46 | 44, 45 | eleq12d 2539 | . . . . . . . . . . . 12 |
47 | 46 | notbid 294 | . . . . . . . . . . 11 |
48 | 43, 47 | anbi12d 710 | . . . . . . . . . 10 |
49 | 48 | cbvrabv 3108 | . . . . . . . . 9 |
50 | 41, 49 | elrab2 3259 | . . . . . . . 8 |
51 | anass 649 | . . . . . . . 8 | |
52 | 50, 51 | bitr4i 252 | . . . . . . 7 |
53 | 52 | baib 903 | . . . . . 6 |
54 | 23, 34, 53 | syl2anc 661 | . . . . 5 |
55 | 27, 1 | syl6eq 2514 | . . . . . . . . 9 |
56 | 55 | fveq2d 5875 | . . . . . . . 8 |
57 | f1f1orn 5832 | . . . . . . . . . . 11 | |
58 | 3, 57 | syl 16 | . . . . . . . . . 10 |
59 | f1ocnvfv1 6182 | . . . . . . . . . 10 | |
60 | 58, 14, 59 | syl2anc 661 | . . . . . . . . 9 |
61 | 60 | adantr 465 | . . . . . . . 8 |
62 | 56, 61 | eqtrd 2498 | . . . . . . 7 |
63 | 62 | eleq2d 2527 | . . . . . 6 |
64 | 63 | notbid 294 | . . . . 5 |
65 | 54, 64 | bitrd 253 | . . . 4 |
66 | 65 | ex 434 | . . 3 |
67 | 17, 66 | mtoi 178 | . 2 |
68 | 16, 67 | eldifd 3486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 { crab 2811
\ cdif 3472 C_ wss 3475 ~P cpw 4012
U_ ciun 4330 class class class wbr 4452
We wwe 4842 X. cxp 5002 `' ccnv 5003
ran crn 5005 Fn wfn 5588 --> wf 5589
-1-1-> wf1 5590
-1-1-onto-> wf1o 5592
` cfv 5593 (class class class)co 6296
com 6700
cmap 7439
cdom 7534 |
This theorem is referenced by: pwfseqlem3 9059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 |
Copyright terms: Public domain | W3C validator |