![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pwin | Unicode version |
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
pwin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssin 3719 | . . . 4 | |
2 | selpw 4019 | . . . . 5 | |
3 | selpw 4019 | . . . . 5 | |
4 | 2, 3 | anbi12i 697 | . . . 4 |
5 | selpw 4019 | . . . 4 | |
6 | 1, 4, 5 | 3bitr4i 277 | . . 3 |
7 | 6 | ineqri 3691 | . 2 |
8 | 7 | eqcomi 2470 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 i^i cin 3474 C_ wss 3475
~P cpw 4012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 df-pw 4014 |
Copyright terms: Public domain | W3C validator |