![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pwpw0 | Unicode version |
Description: Compute the power set of the power set of the empty set. (See pw0 4177 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48. Although this theorem is a special case of pwsn 4243, we have chosen to show a direct elementary proof. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
pwpw0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3492 | . . . . . . . . 9 | |
2 | elsn 4043 | . . . . . . . . . . 11 | |
3 | 2 | imbi2i 312 | . . . . . . . . . 10 |
4 | 3 | albii 1640 | . . . . . . . . 9 |
5 | 1, 4 | bitri 249 | . . . . . . . 8 |
6 | neq0 3795 | . . . . . . . . . 10 | |
7 | exintr 1702 | . . . . . . . . . 10 | |
8 | 6, 7 | syl5bi 217 | . . . . . . . . 9 |
9 | exancom 1671 | . . . . . . . . . . 11 | |
10 | df-clel 2452 | . . . . . . . . . . 11 | |
11 | 9, 10 | bitr4i 252 | . . . . . . . . . 10 |
12 | snssi 4174 | . . . . . . . . . 10 | |
13 | 11, 12 | sylbi 195 | . . . . . . . . 9 |
14 | 8, 13 | syl6 33 | . . . . . . . 8 |
15 | 5, 14 | sylbi 195 | . . . . . . 7 |
16 | 15 | anc2li 557 | . . . . . 6 |
17 | eqss 3518 | . . . . . 6 | |
18 | 16, 17 | syl6ibr 227 | . . . . 5 |
19 | 18 | orrd 378 | . . . 4 |
20 | 0ss 3814 | . . . . . 6 | |
21 | sseq1 3524 | . . . . . 6 | |
22 | 20, 21 | mpbiri 233 | . . . . 5 |
23 | eqimss 3555 | . . . . 5 | |
24 | 22, 23 | jaoi 379 | . . . 4 |
25 | 19, 24 | impbii 188 | . . 3 |
26 | 25 | abbii 2591 | . 2 |
27 | df-pw 4014 | . 2 | |
28 | dfpr2 4044 | . 2 | |
29 | 26, 27, 28 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 A. wal 1393
= wceq 1395 E. wex 1612 e. wcel 1818
{ cab 2442 C_ wss 3475 c0 3784 ~P cpw 4012 { csn 4029
{ cpr 4031 |
This theorem is referenced by: pp0ex 4641 pwcda1 8595 canthp1lem1 9051 rankeq1o 29828 ssoninhaus 29913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-pw 4014 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |