Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwss Unicode version

Theorem pwss 4027
 Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
pwss
Distinct variable groups:   ,   ,

Proof of Theorem pwss
StepHypRef Expression
1 dfss2 3492 . 2
2 selpw 4019 . . . 4
32imbi1i 325 . . 3
43albii 1640 . 2
51, 4bitri 249 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  e.wcel 1818  C_wss 3475  ~Pcpw 4012 This theorem is referenced by:  axpweq  4629  setind2  8187  axgroth5  9223  grothpw  9225  axgroth6  9227 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-in 3482  df-ss 3489  df-pw 4014
 Copyright terms: Public domain W3C validator