Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwtr Unicode version

Theorem pwtr 4705
 Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
pwtr

Proof of Theorem pwtr
StepHypRef Expression
1 unipw 4702 . . 3
21sseq1i 3527 . 2
3 df-tr 4546 . 2
4 dftr4 4550 . 2
52, 3, 43bitr4ri 278 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  C_wss 3475  ~Pcpw 4012  U.cuni 4249  Trwtr 4545 This theorem is referenced by:  r1tr  8215  itunitc1  8821 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-pw 4014  df-sn 4030  df-pr 4032  df-uni 4250  df-tr 4546
 Copyright terms: Public domain W3C validator