Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwun Unicode version

Theorem pwun 4793
 Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwun

Proof of Theorem pwun
StepHypRef Expression
1 pwunss 4790 . . 3
21biantru 505 . 2
3 pwssun 4791 . 2
4 eqss 3518 . 2
52, 3, 43bitr4i 277 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  \/wo 368  /\wa 369  =wceq 1395  u.cun 3473  C_wss 3475  ~Pcpw 4012 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-in 3482  df-ss 3489  df-pw 4014  df-sn 4030  df-pr 4032
 Copyright terms: Public domain W3C validator