![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pwundif | Unicode version |
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.) |
Ref | Expression |
---|---|
pwundif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif1 3903 | . 2 | |
2 | pwunss 4790 | . . . . 5 | |
3 | unss 3677 | . . . . 5 | |
4 | 2, 3 | mpbir 209 | . . . 4 |
5 | 4 | simpli 458 | . . 3 |
6 | ssequn2 3676 | . . 3 | |
7 | 5, 6 | mpbi 208 | . 2 |
8 | 1, 7 | eqtr2i 2487 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
\ cdif 3472 u. cun 3473 C_ wss 3475
~P cpw 4012 |
This theorem is referenced by: pwfilem 7834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-pw 4014 |
Copyright terms: Public domain | W3C validator |