![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pythagtriplem13 | Unicode version |
Description: Lemma for pythagtrip 14358. Show that (which will eventually be closely related to the in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
pythagtriplem13.1 |
Ref | Expression |
---|---|
pythagtriplem13 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pythagtriplem13.1 | . 2 | |
2 | pythagtriplem9 14348 | . . . . . 6 | |
3 | 2 | nnzd 10993 | . . . . 5 |
4 | simp3r 1025 | . . . . . . 7 | |
5 | simp3 998 | . . . . . . . . . . . . 13 | |
6 | simp2 997 | . . . . . . . . . . . . 13 | |
7 | 5, 6 | nnaddcld 10607 | . . . . . . . . . . . 12 |
8 | 7 | nnzd 10993 | . . . . . . . . . . 11 |
9 | 8 | 3ad2ant1 1017 | . . . . . . . . . 10 |
10 | nnz 10911 | . . . . . . . . . . . 12 | |
11 | 10 | 3ad2ant1 1017 | . . . . . . . . . . 11 |
12 | 11 | 3ad2ant1 1017 | . . . . . . . . . 10 |
13 | 2z 10921 | . . . . . . . . . . 11 | |
14 | dvdsgcdb 14182 | . . . . . . . . . . 11 | |
15 | 13, 14 | mp3an1 1311 | . . . . . . . . . 10 |
16 | 9, 12, 15 | syl2anc 661 | . . . . . . . . 9 |
17 | 16 | biimpar 485 | . . . . . . . 8 |
18 | 17 | simprd 463 | . . . . . . 7 |
19 | 4, 18 | mtand 659 | . . . . . 6 |
20 | pythagtriplem7 14346 | . . . . . . 7 | |
21 | 20 | breq2d 4464 | . . . . . 6 |
22 | 19, 21 | mtbird 301 | . . . . 5 |
23 | pythagtriplem8 14347 | . . . . . 6 | |
24 | 23 | nnzd 10993 | . . . . 5 |
25 | nnz 10911 | . . . . . . . . . . . . 13 | |
26 | 25 | 3ad2ant3 1019 | . . . . . . . . . . . 12 |
27 | nnz 10911 | . . . . . . . . . . . . 13 | |
28 | 27 | 3ad2ant2 1018 | . . . . . . . . . . . 12 |
29 | 26, 28 | zsubcld 10999 | . . . . . . . . . . 11 |
30 | 29 | 3ad2ant1 1017 | . . . . . . . . . 10 |
31 | dvdsgcdb 14182 | . . . . . . . . . . 11 | |
32 | 13, 31 | mp3an1 1311 | . . . . . . . . . 10 |
33 | 30, 12, 32 | syl2anc 661 | . . . . . . . . 9 |
34 | 33 | biimpar 485 | . . . . . . . 8 |
35 | 34 | simprd 463 | . . . . . . 7 |
36 | 4, 35 | mtand 659 | . . . . . 6 |
37 | pythagtriplem6 14345 | . . . . . . 7 | |
38 | 37 | breq2d 4464 | . . . . . 6 |
39 | 36, 38 | mtbird 301 | . . . . 5 |
40 | omoe 14336 | . . . . 5 | |
41 | 3, 22, 24, 39, 40 | syl22anc 1229 | . . . 4 |
42 | 29 | zred 10994 | . . . . . . . . . 10 |
43 | 42 | 3ad2ant1 1017 | . . . . . . . . 9 |
44 | simp13 1028 | . . . . . . . . . 10 | |
45 | 44 | nnred 10576 | . . . . . . . . 9 |
46 | 7 | nnred 10576 | . . . . . . . . . 10 |
47 | 46 | 3ad2ant1 1017 | . . . . . . . . 9 |
48 | nnrp 11258 | . . . . . . . . . . . 12 | |
49 | 48 | 3ad2ant2 1018 | . . . . . . . . . . 11 |
50 | 49 | 3ad2ant1 1017 | . . . . . . . . . 10 |
51 | 45, 50 | ltsubrpd 11313 | . . . . . . . . 9 |
52 | nngt0 10590 | . . . . . . . . . . . 12 | |
53 | 52 | 3ad2ant2 1018 | . . . . . . . . . . 11 |
54 | 53 | 3ad2ant1 1017 | . . . . . . . . . 10 |
55 | simp12 1027 | . . . . . . . . . . . 12 | |
56 | 55 | nnred 10576 | . . . . . . . . . . 11 |
57 | 56, 45 | ltaddposd 10161 | . . . . . . . . . 10 |
58 | 54, 57 | mpbid 210 | . . . . . . . . 9 |
59 | 43, 45, 47, 51, 58 | lttrd 9764 | . . . . . . . 8 |
60 | pythagtriplem10 14344 | . . . . . . . . . . 11 | |
61 | 60 | 3adant3 1016 | . . . . . . . . . 10 |
62 | 0re 9617 | . . . . . . . . . . 11 | |
63 | ltle 9694 | . . . . . . . . . . 11 | |
64 | 62, 63 | mpan 670 | . . . . . . . . . 10 |
65 | 43, 61, 64 | sylc 60 | . . . . . . . . 9 |
66 | nngt0 10590 | . . . . . . . . . . . . 13 | |
67 | 66 | 3ad2ant3 1019 | . . . . . . . . . . . 12 |
68 | 67 | 3ad2ant1 1017 | . . . . . . . . . . 11 |
69 | 45, 56, 68, 54 | addgt0d 10152 | . . . . . . . . . 10 |
70 | ltle 9694 | . . . . . . . . . . 11 | |
71 | 62, 70 | mpan 670 | . . . . . . . . . 10 |
72 | 47, 69, 71 | sylc 60 | . . . . . . . . 9 |
73 | 43, 65, 47, 72 | sqrtltd 13259 | . . . . . . . 8 |
74 | 59, 73 | mpbid 210 | . . . . . . 7 |
75 | nnsub 10599 | . . . . . . . 8 | |
76 | 23, 2, 75 | syl2anc 661 | . . . . . . 7 |
77 | 74, 76 | mpbid 210 | . . . . . 6 |
78 | 77 | nnzd 10993 | . . . . 5 |
79 | 2ne0 10653 | . . . . . 6 | |
80 | dvdsval2 13989 | . . . . . 6 | |
81 | 13, 79, 80 | mp3an12 1314 | . . . . 5 |
82 | 78, 81 | syl 16 | . . . 4 |
83 | 41, 82 | mpbid 210 | . . 3 |
84 | 77 | nngt0d 10604 | . . . 4 |
85 | 77 | nnred 10576 | . . . . 5 |
86 | halfpos2 10793 | . . . . 5 | |
87 | 85, 86 | syl 16 | . . . 4 |
88 | 84, 87 | mpbid 210 | . . 3 |
89 | elnnz 10899 | . . 3 | |
90 | 83, 88, 89 | sylanbrc 664 | . 2 |
91 | 1, 90 | syl5eqel 2549 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
class class class wbr 4452 ` cfv 5593
(class class class)co 6296 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cle 9650 cmin 9828 cdiv 10231 cn 10561 2 c2 10610 cz 10889 crp 11249
cexp 12166 csqrt 13066 cdvds 13986 cgcd 14144 |
This theorem is referenced by: pythagtriplem18 14356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 df-prm 14218 |
Copyright terms: Public domain | W3C validator |