![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pythagtriplem17 | Unicode version |
Description: Lemma for pythagtrip 14358. Show the relationship between , , and . (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
pythagtriplem15.1 | |
pythagtriplem15.2 |
Ref | Expression |
---|---|
pythagtriplem17 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pythagtriplem15.1 | . . . . 5 | |
2 | 1 | pythagtriplem12 14350 | . . . 4 |
3 | pythagtriplem15.2 | . . . . 5 | |
4 | 3 | pythagtriplem14 14352 | . . . 4 |
5 | 2, 4 | oveq12d 6314 | . . 3 |
6 | nncn 10569 | . . . . . . 7 | |
7 | 6 | 3ad2ant3 1019 | . . . . . 6 |
8 | 7 | 3ad2ant1 1017 | . . . . 5 |
9 | nncn 10569 | . . . . . . 7 | |
10 | 9 | 3ad2ant1 1017 | . . . . . 6 |
11 | 10 | 3ad2ant1 1017 | . . . . 5 |
12 | 8, 11 | addcld 9636 | . . . 4 |
13 | 8, 11 | subcld 9954 | . . . 4 |
14 | 2cnne0 10775 | . . . . 5 | |
15 | divdir 10255 | . . . . 5 | |
16 | 14, 15 | mp3an3 1313 | . . . 4 |
17 | 12, 13, 16 | syl2anc 661 | . . 3 |
18 | 5, 17 | eqtr4d 2501 | . 2 |
19 | 8, 11, 8 | ppncand 9994 | . . . 4 |
20 | 8 | 2timesd 10806 | . . . 4 |
21 | 19, 20 | eqtr4d 2501 | . . 3 |
22 | 21 | oveq1d 6311 | . 2 |
23 | 2cn 10631 | . . . 4 | |
24 | 2ne0 10653 | . . . 4 | |
25 | divcan3 10256 | . . . 4 | |
26 | 23, 24, 25 | mp3an23 1316 | . . 3 |
27 | 8, 26 | syl 16 | . 2 |
28 | 18, 22, 27 | 3eqtrrd 2503 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cmin 9828 cdiv 10231 cn 10561 2 c2 10610 cexp 12166 csqrt 13066 cdvds 13986 cgcd 14144 |
This theorem is referenced by: pythagtriplem18 14356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 |
Copyright terms: Public domain | W3C validator |