MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem7 Unicode version

Theorem pythagtriplem7 14346
Description: Lemma for pythagtrip 14358. Calculate . (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem7

Proof of Theorem pythagtriplem7
StepHypRef Expression
1 simp3 998 . . . . . . . . 9
21nnzd 10993 . . . . . . . 8
3 simp2 997 . . . . . . . . 9
43nnzd 10993 . . . . . . . 8
52, 4zsubcld 10999 . . . . . . 7
653ad2ant1 1017 . . . . . 6
71, 3nnaddcld 10607 . . . . . . . 8
87nnnn0d 10877 . . . . . . 7
983ad2ant1 1017 . . . . . 6
10 nnnn0 10827 . . . . . . . 8
11103ad2ant1 1017 . . . . . . 7
12113ad2ant1 1017 . . . . . 6
136, 9, 123jca 1176 . . . . 5
14 pythagtriplem4 14343 . . . . . . 7
1514oveq1d 6311 . . . . . 6
16 nnz 10911 . . . . . . . . 9
17163ad2ant1 1017 . . . . . . . 8
18173ad2ant1 1017 . . . . . . 7
19 1gcd 14175 . . . . . . 7
2018, 19syl 16 . . . . . 6
2115, 20eqtrd 2498 . . . . 5
2213, 21jca 532 . . . 4
23 oveq1 6303 . . . . . 6
24233ad2ant2 1018 . . . . 5
25 nncn 10569 . . . . . . . . 9
26253ad2ant1 1017 . . . . . . . 8
2726sqcld 12308 . . . . . . 7
283nncnd 10577 . . . . . . . 8
2928sqcld 12308 . . . . . . 7
3027, 29pncand 9955 . . . . . 6
31303ad2ant1 1017 . . . . 5
321nncnd 10577 . . . . . . . 8
33 subsq 12275 . . . . . . . 8
3432, 28, 33syl2anc 661 . . . . . . 7
357nncnd 10577 . . . . . . . 8
365zcnd 10995 . . . . . . . 8
3735, 36mulcomd 9638 . . . . . . 7
3834, 37eqtrd 2498 . . . . . 6
39383ad2ant1 1017 . . . . 5
4024, 31, 393eqtr3d 2506 . . . 4
41 coprimeprodsq2 14334 . . . 4
4222, 40, 41sylc 60 . . 3
4342fveq2d 5875 . 2
447nnzd 10993 . . . . . 6
45443ad2ant1 1017 . . . . 5
4645, 18gcdcld 14156 . . . 4
4746nn0red 10878 . . 3
4846nn0ge0d 10880 . . 3
4947, 48sqrtsqd 13251 . 2
5043, 49eqtrd 2498 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  /\w3a 973  =wceq 1395  e.wcel 1818   class class class wbr 4452  `cfv 5593  (class class class)co 6296   cc 9511  1c1 9514   caddc 9516   cmul 9518   cmin 9828   cn 10561  2c2 10610   cn0 10820   cz 10889   cexp 12166   csqrt 13066   cdvds 13986   cgcd 14144
This theorem is referenced by:  pythagtriplem9  14348  pythagtriplem11  14349  pythagtriplem13  14351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-cnex 9569  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-mulcom 9577  ax-addass 9578  ax-mulass 9579  ax-distr 9580  ax-i2m1 9581  ax-1ne0 9582  ax-1rid 9583  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588  ax-pre-ltadd 9589  ax-pre-mulgt0 9590  ax-pre-sup 9591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-1st 6800  df-2nd 6801  df-recs 7061  df-rdg 7095  df-1o 7149  df-2o 7150  df-oadd 7153  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-fin 7540  df-sup 7921  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-sub 9830  df-neg 9831  df-div 10232  df-nn 10562  df-2 10619  df-3 10620  df-n0 10821  df-z 10890  df-uz 11111  df-rp 11250  df-fz 11702  df-fl 11929  df-mod 11997  df-seq 12108  df-exp 12167  df-cj 12932  df-re 12933  df-im 12934  df-sqrt 13068  df-abs 13069  df-dvds 13987  df-gcd 14145  df-prm 14218
  Copyright terms: Public domain W3C validator