![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > qexpz | Unicode version |
Description: If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015.) |
Ref | Expression |
---|---|
qexpz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2529 | . 2 | |
2 | simpll2 1036 | . . . . . . . 8 | |
3 | 2 | nncnd 10577 | . . . . . . 7 |
4 | 3 | mul01d 9800 | . . . . . 6 |
5 | simpr 461 | . . . . . . . . 9 | |
6 | simpll3 1037 | . . . . . . . . 9 | |
7 | simpll1 1035 | . . . . . . . . . . 11 | |
8 | qcn 11225 | . . . . . . . . . . 11 | |
9 | 7, 8 | syl 16 | . . . . . . . . . 10 |
10 | simplr 755 | . . . . . . . . . 10 | |
11 | 2 | nnzd 10993 | . . . . . . . . . 10 |
12 | 9, 10, 11 | expne0d 12316 | . . . . . . . . 9 |
13 | pczcl 14372 | . . . . . . . . 9 | |
14 | 5, 6, 12, 13 | syl12anc 1226 | . . . . . . . 8 |
15 | 14 | nn0ge0d 10880 | . . . . . . 7 |
16 | pcexp 14383 | . . . . . . . 8 | |
17 | 5, 7, 10, 11, 16 | syl121anc 1233 | . . . . . . 7 |
18 | 15, 17 | breqtrd 4476 | . . . . . 6 |
19 | 4, 18 | eqbrtrd 4472 | . . . . 5 |
20 | 0red 9618 | . . . . . 6 | |
21 | pcqcl 14380 | . . . . . . . 8 | |
22 | 5, 7, 10, 21 | syl12anc 1226 | . . . . . . 7 |
23 | 22 | zred 10994 | . . . . . 6 |
24 | 2 | nnred 10576 | . . . . . 6 |
25 | 2 | nngt0d 10604 | . . . . . 6 |
26 | lemul2 10420 | . . . . . 6 | |
27 | 20, 23, 24, 25, 26 | syl112anc 1232 | . . . . 5 |
28 | 19, 27 | mpbird 232 | . . . 4 |
29 | 28 | ralrimiva 2871 | . . 3 |
30 | simpl1 999 | . . . 4 | |
31 | pcz 14404 | . . . 4 | |
32 | 30, 31 | syl 16 | . . 3 |
33 | 29, 32 | mpbird 232 | . 2 |
34 | 0zd 10901 | . 2 | |
35 | 1, 33, 34 | pm2.61ne 2772 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
class class class wbr 4452 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 cmul 9518 clt 9649 cle 9650 cn 10561 cn0 10820
cz 10889 cq 11211 cexp 12166 cprime 14217 cpc 14360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-q 11212 df-rp 11250 df-fz 11702 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 df-prm 14218 df-pc 14361 |
Copyright terms: Public domain | W3C validator |