![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > qliftlem | Unicode version |
Description: , a function lift, is a subset of X. S . (Contributed by
Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | |
qlift.2 | |
qlift.3 | |
qlift.4 |
Ref | Expression |
---|---|
qliftlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.3 | . . 3 | |
2 | qlift.4 | . . 3 | |
3 | erex 7354 | . . 3 | |
4 | 1, 2, 3 | sylc 60 | . 2 |
5 | ecelqsg 7385 | . 2 | |
6 | 4, 5 | sylan 471 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
<. cop 4035 e. cmpt 4510 ran crn 5005
Er wer 7327 [ cec 7328 /. cqs 7329 |
This theorem is referenced by: qliftrel 7412 qliftel 7413 qliftel1 7414 qliftfun 7415 qliftf 7418 qliftval 7419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-er 7330 df-ec 7332 df-qs 7336 |
Copyright terms: Public domain | W3C validator |