![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > qnnen | Unicode version |
Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.) |
Ref | Expression |
---|---|
qnnen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 8084 | . . . . . . 7 | |
2 | nnenom 12090 | . . . . . . . 8 | |
3 | 2 | ensymi 7585 | . . . . . . 7 |
4 | isnumi 8348 | . . . . . . 7 | |
5 | 1, 3, 4 | mp2an 672 | . . . . . 6 |
6 | znnen 13946 | . . . . . . 7 | |
7 | ennum 8349 | . . . . . . 7 | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 |
9 | 5, 8 | mpbir 209 | . . . . 5 |
10 | xpnum 8353 | . . . . 5 | |
11 | 9, 5, 10 | mp2an 672 | . . . 4 |
12 | eqid 2457 | . . . . . 6 | |
13 | ovex 6324 | . . . . . 6 | |
14 | 12, 13 | fnmpt2i 6869 | . . . . 5 |
15 | 12 | rnmpt2 6412 | . . . . . 6 |
16 | elq 11213 | . . . . . . 7 | |
17 | 16 | abbi2i 2590 | . . . . . 6 |
18 | 15, 17 | eqtr4i 2489 | . . . . 5 |
19 | df-fo 5599 | . . . . 5 | |
20 | 14, 18, 19 | mpbir2an 920 | . . . 4 |
21 | fodomnum 8459 | . . . 4 | |
22 | 11, 20, 21 | mp2 9 | . . 3 |
23 | nnex 10567 | . . . . . 6 | |
24 | 23 | enref 7568 | . . . . 5 |
25 | xpen 7700 | . . . . 5 | |
26 | 6, 24, 25 | mp2an 672 | . . . 4 |
27 | xpnnen 13942 | . . . 4 | |
28 | 26, 27 | entri 7589 | . . 3 |
29 | domentr 7594 | . . 3 | |
30 | 22, 28, 29 | mp2an 672 | . 2 |
31 | qex 11223 | . . 3 | |
32 | nnssq 11220 | . . 3 | |
33 | ssdomg 7581 | . . 3 | |
34 | 31, 32, 33 | mp2 9 | . 2 |
35 | sbth 7657 | . 2 | |
36 | 30, 34, 35 | mp2an 672 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
e. wcel 1818 { cab 2442 E. wrex 2808
cvv 3109
C_ wss 3475 class class class wbr 4452
con0 4883 X. cxp 5002 dom cdm 5004
ran crn 5005 Fn wfn 5588 -onto-> wfo 5591 (class class class)co 6296
e. cmpt2 6298 com 6700
cen 7533 cdom 7534 ccrd 8337 cdiv 10231 cn 10561 cz 10889 cq 11211 |
This theorem is referenced by: rpnnen 13960 resdomq 13977 re2ndc 21306 ovolq 21902 opnmblALT 22012 vitali 22022 mbfimaopnlem 22062 mbfaddlem 22067 mblfinlem1 30051 irrapx1 30764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-oi 7956 df-card 8341 df-acn 8344 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-q 11212 |
Copyright terms: Public domain | W3C validator |