MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsdisj2 Unicode version

Theorem qsdisj2 7408
Description: A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016.)
Assertion
Ref Expression
qsdisj2
Distinct variable groups:   ,   ,   ,

Proof of Theorem qsdisj2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . 4
2 simprl 756 . . . 4
3 simprr 757 . . . 4
41, 2, 3qsdisj 7407 . . 3
54ralrimivva 2878 . 2
6 id 22 . . 3
76disjor 4436 . 2
85, 7sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  \/wo 368  /\wa 369  =wceq 1395  e.wcel 1818  A.wral 2807  i^icin 3474   c0 3784  Disj_wdisj 4422  Erwer 7327  /.cqs 7329
This theorem is referenced by:  qshash  13639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-disj 4423  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-er 7330  df-ec 7332  df-qs 7336
  Copyright terms: Public domain W3C validator