![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > qsid | Unicode version |
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
qsid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . . . 7 | |
2 | 1 | ecid 7395 | . . . . . 6 |
3 | 2 | eqeq2i 2475 | . . . . 5 |
4 | equcom 1794 | . . . . 5 | |
5 | 3, 4 | bitri 249 | . . . 4 |
6 | 5 | rexbii 2959 | . . 3 |
7 | vex 3112 | . . . 4 | |
8 | 7 | elqs 7383 | . . 3 |
9 | risset 2982 | . . 3 | |
10 | 6, 8, 9 | 3bitr4i 277 | . 2 |
11 | 10 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
E. wrex 2808 cep 4794
`' ccnv 5003 [ cec 7328 /. cqs 7329 |
This theorem is referenced by: dfcnqs 9540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-eprel 4796 df-xp 5010 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-ec 7332 df-qs 7336 |
Copyright terms: Public domain | W3C validator |