![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r19.12 | Unicode version |
Description: Restricted quantifier version of 19.12 1950. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . . . 4 | |
2 | nfra1 2838 | . . . 4 | |
3 | 1, 2 | nfrex 2920 | . . 3 |
4 | ax-1 6 | . . 3 | |
5 | 3, 4 | ralrimi 2857 | . 2 |
6 | rsp 2823 | . . . . 5 | |
7 | 6 | com12 31 | . . . 4 |
8 | 7 | reximdv 2931 | . . 3 |
9 | 8 | ralimia 2848 | . 2 |
10 | 5, 9 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
A. wral 2807 E. wrex 2808 |
This theorem is referenced by: iuniin 4341 ucncn 20788 ftc1a 22438 rngoid 25385 rngmgmbs4 25419 heicant 30049 intimass 37768 intimag 37770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |