Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23 Unicode version

Theorem r19.23 2936
 Description: Restricted quantifier version of 19.23 1910. See r19.23v 2937 for a version requiring fewer axioms. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
r19.23.1
Assertion
Ref Expression
r19.23

Proof of Theorem r19.23
StepHypRef Expression
1 r19.23.1 . 2
2 r19.23t 2935 . 2
31, 2ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  F/wnf 1616  A.wral 2807  E.wrex 2808 This theorem is referenced by:  r19.23vOLD  2938  rexlimi  2939  rexlimdOLD  2942 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-ral 2812  df-rex 2813
 Copyright terms: Public domain W3C validator