MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23t Unicode version

Theorem r19.23t 2935
Description: Closed theorem form of r19.23 2936. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
r19.23t

Proof of Theorem r19.23t
StepHypRef Expression
1 19.23t 1909 . 2
2 df-ral 2812 . . 3
3 impexp 446 . . . 4
43albii 1640 . . 3
52, 4bitr4i 252 . 2
6 df-rex 2813 . . 3
76imbi1i 325 . 2
81, 5, 73bitr4g 288 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612  F/wnf 1616  e.wcel 1818  A.wral 2807  E.wrex 2808
This theorem is referenced by:  r19.23  2936  rexlimd2  2940  riotasv3d  34691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-ral 2812  df-rex 2813
  Copyright terms: Public domain W3C validator