MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-2 Unicode version

Theorem r19.26-2 2985
Description: Restricted quantifier version of 19.26-2 1681. Version of r19.26 2984 with two quantifiers. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
r19.26-2

Proof of Theorem r19.26-2
StepHypRef Expression
1 r19.26 2984 . . 3
21ralbii 2888 . 2
3 r19.26 2984 . 2
42, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  A.wral 2807
This theorem is referenced by:  fununi  5659  tz7.48lem  7125  isffth2  15285  ispos2  15577  issgrpv  15913  issgrpn0  15914  isnsg2  16231  efgred  16766  dfrhm2  17366  cpmatacl  19217  cpmatmcllem  19219  caucfil  21722  aalioulem6  22733  ajmoi  25774  adjmo  26751  iccllyscon  28695  dfso3  29097  ispridl2  30435  isrnghm  32698  ishlat2  35078  fiinfi  37758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371  df-ral 2812
  Copyright terms: Public domain W3C validator