![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r19.26-3 | Unicode version |
Description: Version of r19.26 2984 with three quantifiers. (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
r19.26-3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . . 3 | |
2 | 1 | ralbii 2888 | . 2 |
3 | r19.26 2984 | . 2 | |
4 | r19.26 2984 | . . . 4 | |
5 | 4 | anbi1i 695 | . . 3 |
6 | df-3an 975 | . . 3 | |
7 | 5, 6 | bitr4i 252 | . 2 |
8 | 2, 3, 7 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
/\ w3a 973 A. wral 2807 |
This theorem is referenced by: sgrp2rid2ex 16045 axeuclid 24266 axcontlem8 24274 stoweidlem60 31842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-ral 2812 |
Copyright terms: Public domain | W3C validator |