MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-3 Unicode version

Theorem r19.26-3 2986
Description: Version of r19.26 2984 with three quantifiers. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
r19.26-3

Proof of Theorem r19.26-3
StepHypRef Expression
1 df-3an 975 . . 3
21ralbii 2888 . 2
3 r19.26 2984 . 2
4 r19.26 2984 . . . 4
54anbi1i 695 . . 3
6 df-3an 975 . . 3
75, 6bitr4i 252 . 2
82, 3, 73bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  /\w3a 973  A.wral 2807
This theorem is referenced by:  sgrp2rid2ex  16045  axeuclid  24266  axcontlem8  24274  stoweidlem60  31842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-ral 2812
  Copyright terms: Public domain W3C validator