![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r19.26 | Unicode version |
Description: Restricted quantifier version of 19.26 1680. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . 4 | |
2 | 1 | ralimi 2850 | . . 3 |
3 | simpr 461 | . . . 4 | |
4 | 3 | ralimi 2850 | . . 3 |
5 | 2, 4 | jca 532 | . 2 |
6 | pm3.2 447 | . . . 4 | |
7 | 6 | ral2imi 2845 | . . 3 |
8 | 7 | imp 429 | . 2 |
9 | 5, 8 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
A. wral 2807 |
This theorem is referenced by: r19.26-2 2985 r19.26-3 2986 ralbiim 2989 r19.27v 2990 r19.35 3004 reu8 3295 ssrab 3577 r19.28z 3921 r19.28zv 3924 r19.27z 3928 r19.27zv 3929 2ralunsn 4238 iuneq2 4347 disjxun 4450 asymref2 5389 cnvpo 5550 fncnv 5657 fnres 5702 fnopabg 5709 mpteqb 5970 eqfnfv3 5983 fvn0ssdmfun 6022 caoftrn 6575 iiner 7402 ixpeq2 7503 ixpin 7514 ixpfi2 7838 wemaplem2 7993 dfac5 8530 kmlem6 8556 eltsk2g 9150 intgru 9213 axgroth6 9227 fsequb 12085 rexanuz 13178 rexanre 13179 cau3lem 13187 rlimcn2 13413 o1of2 13435 o1rlimmul 13441 climbdd 13494 sqrt2irr 13982 gcdcllem1 14149 pc11 14403 prmreclem2 14435 catpropd 15104 issubc3 15218 fucinv 15342 ispos2 15577 issubg3 16219 issubg4 16220 pmtrdifwrdel2 16511 ringsrg 17237 cply1mul 18335 iunocv 18712 scmatf1 19033 cpmatsubgpmat 19221 tgval2 19457 1stcelcls 19962 ptclsg 20116 ptcnplem 20122 fbun 20341 txflf 20507 ucncn 20788 prdsmet 20873 metequiv 21012 metequiv2 21013 iscau4 21718 cmetcaulem 21727 evthicc2 21872 ismbfcn 22038 mbfi1flimlem 22129 rolle 22391 itgsubst 22450 plydivex 22693 ulmcaulem 22789 ulmcau 22790 ulmbdd 22793 ulmcn 22794 mumullem2 23454 2sqlem6 23644 axpasch 24244 axeuclid 24266 axcontlem2 24268 axcontlem4 24270 axcontlem7 24273 usg2wlkeq 24708 usgfiregdegfi 24911 usgreghash2spot 25069 frgrareg 25117 frgraregord013 25118 friendshipgt3 25121 rngoueqz 25432 ocsh 26201 spanuni 26462 riesz4i 26982 leopadd 27051 leoptri 27055 leoptr 27056 disjunsn 27453 mptfnf 27499 voliune 28201 volfiniune 28202 eulerpartlemr 28313 eulerpartlemn 28320 dfpo2 29184 poseq 29333 wfr3g 29342 wzel 29380 frr3g 29386 ovoliunnfl 30056 voliunnfl 30058 volsupnfl 30059 itg2addnc 30069 neibastop1 30177 inixp 30219 intidl 30426 mzpincl 30666 lerabdioph 30738 ltrabdioph 30741 nerabdioph 30742 dvdsrabdioph 30743 dford3lem1 30968 stoweidlem7 31789 stoweidlem54 31836 dirkercncflem3 31887 2ralbiim 32179 2reu4a 32194 ralnralall 32294 ply1mulgsumlem1 32986 ldepsnlinclem1 33106 ldepsnlinclem2 33107 pclclN 35615 tendoeq2 36500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ral 2812 |
Copyright terms: Public domain | W3C validator |