MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26m Unicode version

Theorem r19.26m 2987
Description: Version of 19.26 1680 and r19.26 2984 with restricted quantifiers ranging over different classes. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
r19.26m

Proof of Theorem r19.26m
StepHypRef Expression
1 19.26 1680 . 2
2 df-ral 2812 . . 3
3 df-ral 2812 . . 3
42, 3anbi12i 697 . 2
51, 4bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  e.wcel 1818  A.wral 2807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371  df-ral 2812
  Copyright terms: Public domain W3C validator