![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r19.27z | Unicode version |
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
Ref | Expression |
---|---|
r19.27z.1 |
Ref | Expression |
---|---|
r19.27z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.27z.1 | . . . 4 | |
2 | 1 | r19.3rz 3920 | . . 3 |
3 | 2 | anbi2d 703 | . 2 |
4 | r19.26 2984 | . 2 | |
5 | 3, 4 | syl6rbbr 264 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 F/ wnf 1616 =/= wne 2652
A. wral 2807 c0 3784 |
This theorem is referenced by: raaan 3937 raaan2 32180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-nul 3785 |
Copyright terms: Public domain | W3C validator |