Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.27z Unicode version

Theorem r19.27z 3928
 Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.)
Hypothesis
Ref Expression
r19.27z.1
Assertion
Ref Expression
r19.27z
Distinct variable group:   ,

Proof of Theorem r19.27z
StepHypRef Expression
1 r19.27z.1 . . . 4
21r19.3rz 3920 . . 3
32anbi2d 703 . 2
4 r19.26 2984 . 2
53, 4syl6rbbr 264 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  F/wnf 1616  =/=wne 2652  A.wral 2807   c0 3784 This theorem is referenced by:  raaan  3937  raaan2  32180 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-v 3111  df-dif 3478  df-nul 3785
 Copyright terms: Public domain W3C validator