MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28v Unicode version

Theorem r19.28v 2991
Description: Restricted quantifier version of one direction of 19.28 1924. (The other direction holds when is nonempty, see r19.28zv 3924.) (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.28v
Distinct variable group:   ,

Proof of Theorem r19.28v
StepHypRef Expression
1 r19.27v 2990 . 2
2 ancom 450 . 2
3 ancom 450 . . 3
43ralbii 2888 . 2
51, 2, 43imtr4i 266 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  A.wral 2807
This theorem is referenced by:  rr19.28v  3242  fununi  5659  txlm  20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704
This theorem depends on definitions:  df-bi 185  df-an 371  df-ral 2812
  Copyright terms: Public domain W3C validator