![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r19.29 | Unicode version |
Description: Restricted quantifier version of 19.29 1683. See also r19.29r 2993. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.29 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 447 | . . . 4 | |
2 | 1 | ralimi 2850 | . . 3 |
3 | rexim 2922 | . . 3 | |
4 | 2, 3 | syl 16 | . 2 |
5 | 4 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wral 2807 E. wrex 2808 |
This theorem is referenced by: r19.29r 2993 r19.29d2r 3000 disjiun 4442 triun 4558 ralxfrd 4666 elrnmptg 5257 fmpt 6052 fliftfun 6210 fun11iun 6760 omabs 7315 findcard3 7783 r1sdom 8213 tcrank 8323 infxpenlem 8412 dfac12k 8548 cfslb2n 8669 cfcoflem 8673 iundom2g 8936 supsrlem 9509 axpre-sup 9567 fimaxre3 10517 limsupbnd2 13306 rlimuni 13373 rlimcld2 13401 rlimno1 13476 pgpfac1lem5 17130 ppttop 19508 epttop 19510 tgcnp 19754 lmcnp 19805 bwth 19910 1stcrest 19954 txlm 20149 tx1stc 20151 fbfinnfr 20342 fbunfip 20370 filuni 20386 ufileu 20420 fbflim2 20478 flftg 20497 ufilcmp 20533 cnpfcf 20542 tsmsxp 20657 metss 21011 lmmbr 21697 ivthlem2 21864 ivthlem3 21865 dyadmax 22007 rhmdvdsr 27808 tpr2rico 27894 esumpcvgval 28084 sigaclcuni 28118 voliune 28201 volfiniune 28202 dya2icoseg2 28249 unirep 30203 heibor1lem 30305 2r19.29 30595 stoweidlem35 31817 ralxfrd2 32303 pmapglbx 35493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |