![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r19.29_2a | Unicode version |
Description: A commonly used pattern based on r19.29 2992, version with two restricted quantifiers (Contributed by Thierry Arnoux, 26-Nov-2017.) |
Ref | Expression |
---|---|
r19.29_2a.1 | |
r19.29_2a.2 |
Ref | Expression |
---|---|
r19.29_2a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29_2a.1 | . . . . . 6 | |
2 | 1 | ex 434 | . . . . 5 |
3 | 2 | ralrimiva 2871 | . . . 4 |
4 | 3 | ralrimiva 2871 | . . 3 |
5 | r19.29_2a.2 | . . 3 | |
6 | 4, 5 | r19.29d2r 3000 | . 2 |
7 | pm3.35 587 | . . . . 5 | |
8 | 7 | ancoms 453 | . . . 4 |
9 | 8 | rexlimivw 2946 | . . 3 |
10 | 9 | rexlimivw 2946 | . 2 |
11 | 6, 10 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
e. wcel 1818 A. wral 2807 E. wrex 2808 |
This theorem is referenced by: trust 20732 utoptop 20737 metusttoOLD 21060 metustto 21061 restmetu 21090 tgbtwndiff 23897 legov 23972 legso 23985 tglnne 24008 tglndim0 24009 tglinethru 24016 tglnne0 24020 tglnpt2 24021 footex 24095 midex 24111 opptgdim2 24117 f1otrge 24175 archiabllem2c 27739 txomap 27837 qtophaus 27839 pstmfval 27875 eulerpartlemgvv 28315 irrapxlem4 30761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |