![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r19.29af2 | Unicode version |
Description: A commonly used pattern based on r19.29 2992. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
r19.29af2.p | |
r19.29af2.c | |
r19.29af2.1 | |
r19.29af2.2 |
Ref | Expression |
---|---|
r19.29af2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29af2.2 | . 2 | |
2 | r19.29af2.p | . . 3 | |
3 | r19.29af2.c | . . 3 | |
4 | r19.29af2.1 | . . . 4 | |
5 | 4 | exp31 604 | . . 3 |
6 | 2, 3, 5 | rexlimd 2941 | . 2 |
7 | 1, 6 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
F/ wnf 1616 e. wcel 1818 E. wrex 2808 |
This theorem is referenced by: r19.29af 2997 restmetu 21090 locfinreflem 27843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |