Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29d2r Unicode version

Theorem r19.29d2r 3000
 Description: Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
r19.29d2r.1
r19.29d2r.2
Assertion
Ref Expression
r19.29d2r

Proof of Theorem r19.29d2r
StepHypRef Expression
1 r19.29d2r.1 . . 3
2 r19.29d2r.2 . . 3
3 r19.29 2992 . . 3
41, 2, 3syl2anc 661 . 2
5 r19.29 2992 . . 3
65reximi 2925 . 2
74, 6syl 16 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  A.wral 2807  E.wrex 2808 This theorem is referenced by:  r19.29_2a  3001  ucnima  20784  tgisline  24007  rnmpt2ss  27515  xrofsup  27582 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-ral 2812  df-rex 2813
 Copyright terms: Public domain W3C validator