MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.32v Unicode version

Theorem r19.32v 3003
Description: Restricted quantifier version of 19.32v 1730. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
r19.32v
Distinct variable group:   ,

Proof of Theorem r19.32v
StepHypRef Expression
1 r19.21v 2862 . 2
2 df-or 370 . . 3
32ralbii 2888 . 2
4 df-or 370 . 2
51, 3, 43bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  A.wral 2807
This theorem is referenced by:  iinun2  4396  iinuni  4414  axcontlem2  24268  axcontlem7  24273  disjnf  27433  lindslinindsimp2  33064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704
This theorem depends on definitions:  df-bi 185  df-or 370  df-ex 1613  df-ral 2812
  Copyright terms: Public domain W3C validator