Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.35 Unicode version

Theorem r19.35 3004
 Description: Restricted quantifier version of 19.35 1687. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
r19.35

Proof of Theorem r19.35
StepHypRef Expression
1 r19.26 2984 . . . 4
2 annim 425 . . . . 5
32ralbii 2888 . . . 4
4 df-an 371 . . . 4
51, 3, 43bitr3i 275 . . 3
65con2bii 332 . 2
7 dfrex2 2908 . . 3
87imbi2i 312 . 2
9 dfrex2 2908 . 2
106, 8, 93bitr4ri 278 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  A.wral 2807  E.wrex 2808 This theorem is referenced by:  r19.36v  3005  r19.37  3006  r19.43  3013  r19.37zv  3925  r19.36zv  3930  iinexg  4612  bndndx  10819  nmobndseqi  25694  nmobndseqiOLD  25695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-ral 2812  df-rex 2813
 Copyright terms: Public domain W3C validator