![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r19.35 | Unicode version |
Description: Restricted quantifier version of 19.35 1687. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
r19.35 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 2984 | . . . 4 | |
2 | annim 425 | . . . . 5 | |
3 | 2 | ralbii 2888 | . . . 4 |
4 | df-an 371 | . . . 4 | |
5 | 1, 3, 4 | 3bitr3i 275 | . . 3 |
6 | 5 | con2bii 332 | . 2 |
7 | dfrex2 2908 | . . 3 | |
8 | 7 | imbi2i 312 | . 2 |
9 | dfrex2 2908 | . 2 | |
10 | 6, 8, 9 | 3bitr4ri 278 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wral 2807
E. wrex 2808 |
This theorem is referenced by: r19.36v 3005 r19.37 3006 r19.43 3013 r19.37zv 3925 r19.36zv 3930 iinexg 4612 bndndx 10819 nmobndseqi 25694 nmobndseqiOLD 25695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |