MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.37v Unicode version

Theorem r19.37v 3007
Description: Restricted quantifier version of one direction of 19.37v 1768. (The other direction holds iff is nonempty, see r19.37zv 3925.) (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.37v
Distinct variable group:   ,

Proof of Theorem r19.37v
StepHypRef Expression
1 nfv 1707 . 2
21r19.37 3006 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  E.wrex 2808
This theorem is referenced by:  ssiun  4372  isucn2  20782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-ral 2812  df-rex 2813
  Copyright terms: Public domain W3C validator