![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r1limwun | Unicode version |
Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
r1limwun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1tr 8215 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | limelon 4946 | . . . . . 6 | |
4 | r1fnon 8206 | . . . . . . 7 | |
5 | fndm 5685 | . . . . . . 7 | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 |
7 | 3, 6 | syl6eleqr 2556 | . . . . 5 |
8 | onssr1 8270 | . . . . 5 | |
9 | 7, 8 | syl 16 | . . . 4 |
10 | 0ellim 4945 | . . . . 5 | |
11 | 10 | adantl 466 | . . . 4 |
12 | 9, 11 | sseldd 3504 | . . 3 |
13 | ne0i 3790 | . . 3 | |
14 | 12, 13 | syl 16 | . 2 |
15 | rankuni 8302 | . . . . . 6 | |
16 | rankon 8234 | . . . . . . . . 9 | |
17 | eloni 4893 | . . . . . . . . 9 | |
18 | orduniss 4977 | . . . . . . . . 9 | |
19 | 16, 17, 18 | mp2b 10 | . . . . . . . 8 |
20 | 19 | a1i 11 | . . . . . . 7 |
21 | rankr1ai 8237 | . . . . . . . 8 | |
22 | 21 | adantl 466 | . . . . . . 7 |
23 | onuni 6628 | . . . . . . . . 9 | |
24 | 16, 23 | ax-mp 5 | . . . . . . . 8 |
25 | 3 | adantr 465 | . . . . . . . 8 |
26 | ontr2 4930 | . . . . . . . 8 | |
27 | 24, 25, 26 | sylancr 663 | . . . . . . 7 |
28 | 20, 22, 27 | mp2and 679 | . . . . . 6 |
29 | 15, 28 | syl5eqel 2549 | . . . . 5 |
30 | r1elwf 8235 | . . . . . . . 8 | |
31 | 30 | adantl 466 | . . . . . . 7 |
32 | uniwf 8258 | . . . . . . 7 | |
33 | 31, 32 | sylib 196 | . . . . . 6 |
34 | 7 | adantr 465 | . . . . . 6 |
35 | rankr1ag 8241 | . . . . . 6 | |
36 | 33, 34, 35 | syl2anc 661 | . . . . 5 |
37 | 29, 36 | mpbird 232 | . . . 4 |
38 | r1pwcl 8286 | . . . . . 6 | |
39 | 38 | adantl 466 | . . . . 5 |
40 | 39 | biimpa 484 | . . . 4 |
41 | 30 | ad2antlr 726 | . . . . . . . 8 |
42 | r1elwf 8235 | . . . . . . . . 9 | |
43 | 42 | adantl 466 | . . . . . . . 8 |
44 | rankprb 8290 | . . . . . . . 8 | |
45 | 41, 43, 44 | syl2anc 661 | . . . . . . 7 |
46 | limord 4942 | . . . . . . . . . 10 | |
47 | 46 | ad3antlr 730 | . . . . . . . . 9 |
48 | 22 | adantr 465 | . . . . . . . . 9 |
49 | rankr1ai 8237 | . . . . . . . . . 10 | |
50 | 49 | adantl 466 | . . . . . . . . 9 |
51 | ordunel 6662 | . . . . . . . . 9 | |
52 | 47, 48, 50, 51 | syl3anc 1228 | . . . . . . . 8 |
53 | limsuc 6684 | . . . . . . . . 9 | |
54 | 53 | ad3antlr 730 | . . . . . . . 8 |
55 | 52, 54 | mpbid 210 | . . . . . . 7 |
56 | 45, 55 | eqeltrd 2545 | . . . . . 6 |
57 | prwf 8250 | . . . . . . . 8 | |
58 | 41, 43, 57 | syl2anc 661 | . . . . . . 7 |
59 | 34 | adantr 465 | . . . . . . 7 |
60 | rankr1ag 8241 | . . . . . . 7 | |
61 | 58, 59, 60 | syl2anc 661 | . . . . . 6 |
62 | 56, 61 | mpbird 232 | . . . . 5 |
63 | 62 | ralrimiva 2871 | . . . 4 |
64 | 37, 40, 63 | 3jca 1176 | . . 3 |
65 | 64 | ralrimiva 2871 | . 2 |
66 | fvex 5881 | . . 3 | |
67 | iswun 9103 | . . 3 | |
68 | 66, 67 | ax-mp 5 | . 2 |
69 | 2, 14, 65, 68 | syl3anbrc 1180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
cvv 3109
u. cun 3473 C_ wss 3475 c0 3784 ~P cpw 4012 { cpr 4031
U. cuni 4249 Tr wtr 4545 Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
dom cdm 5004 " cima 5007 Fn wfn 5588
` cfv 5593 cr1 8201
crnk 8202 cwun 9099 |
This theorem is referenced by: r1wunlim 9136 wunex3 9140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-reg 8039 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 df-wun 9101 |
Copyright terms: Public domain | W3C validator |