![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r1pw | Unicode version |
Description: A stronger property of than rankpw 8282. The latter merely proves that of the successor is a power set, but here we prove that if is in the cumulative hierarchy, then is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
r1pw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankpwi 8262 | . . . . . 6 | |
2 | 1 | eleq1d 2526 | . . . . 5 |
3 | eloni 4893 | . . . . . . 7 | |
4 | ordsucelsuc 6657 | . . . . . . 7 | |
5 | 3, 4 | syl 16 | . . . . . 6 |
6 | 5 | bicomd 201 | . . . . 5 |
7 | 2, 6 | sylan9bb 699 | . . . 4 |
8 | pwwf 8246 | . . . . . 6 | |
9 | 8 | biimpi 194 | . . . . 5 |
10 | suceloni 6648 | . . . . . 6 | |
11 | r1fnon 8206 | . . . . . . 7 | |
12 | fndm 5685 | . . . . . . 7 | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 |
14 | 10, 13 | syl6eleqr 2556 | . . . . 5 |
15 | rankr1ag 8241 | . . . . 5 | |
16 | 9, 14, 15 | syl2an 477 | . . . 4 |
17 | 13 | eleq2i 2535 | . . . . 5 |
18 | rankr1ag 8241 | . . . . 5 | |
19 | 17, 18 | sylan2br 476 | . . . 4 |
20 | 7, 16, 19 | 3bitr4rd 286 | . . 3 |
21 | 20 | ex 434 | . 2 |
22 | r1elwf 8235 | . . . 4 | |
23 | r1elwf 8235 | . . . . . 6 | |
24 | r1elssi 8244 | . . . . . 6 | |
25 | 23, 24 | syl 16 | . . . . 5 |
26 | ssid 3522 | . . . . . 6 | |
27 | elex 3118 | . . . . . . . 8 | |
28 | pwexb 6611 | . . . . . . . 8 | |
29 | 27, 28 | sylibr 212 | . . . . . . 7 |
30 | elpwg 4020 | . . . . . . 7 | |
31 | 29, 30 | syl 16 | . . . . . 6 |
32 | 26, 31 | mpbiri 233 | . . . . 5 |
33 | 25, 32 | sseldd 3504 | . . . 4 |
34 | 22, 33 | pm5.21ni 352 | . . 3 |
35 | 34 | a1d 25 | . 2 |
36 | 21, 35 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 cvv 3109
C_ wss 3475 ~P cpw 4012 U. cuni 4249
Ord word 4882
con0 4883 suc csuc 4885 dom cdm 5004
" cima 5007 Fn wfn 5588 ` cfv 5593
cr1 8201
crnk 8202 |
This theorem is referenced by: inatsk 9177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |