![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r1sdom | Unicode version |
Description: Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013.) |
Ref | Expression |
---|---|
r1sdom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2530 | . . . 4 | |
2 | fveq2 5871 | . . . . 5 | |
3 | 2 | breq2d 4464 | . . . 4 |
4 | 1, 3 | imbi12d 320 | . . 3 |
5 | eleq2 2530 | . . . 4 | |
6 | fveq2 5871 | . . . . 5 | |
7 | 6 | breq2d 4464 | . . . 4 |
8 | 5, 7 | imbi12d 320 | . . 3 |
9 | eleq2 2530 | . . . 4 | |
10 | fveq2 5871 | . . . . 5 | |
11 | 10 | breq2d 4464 | . . . 4 |
12 | 9, 11 | imbi12d 320 | . . 3 |
13 | eleq2 2530 | . . . 4 | |
14 | fveq2 5871 | . . . . 5 | |
15 | 14 | breq2d 4464 | . . . 4 |
16 | 13, 15 | imbi12d 320 | . . 3 |
17 | noel 3788 | . . . 4 | |
18 | 17 | pm2.21i 131 | . . 3 |
19 | elsuci 4949 | . . . . 5 | |
20 | fvex 5881 | . . . . . . . . . . 11 | |
21 | 20 | canth2 7690 | . . . . . . . . . 10 |
22 | r1suc 8209 | . . . . . . . . . 10 | |
23 | 21, 22 | syl5breqr 4488 | . . . . . . . . 9 |
24 | sdomtr 7675 | . . . . . . . . . 10 | |
25 | 24 | expcom 435 | . . . . . . . . 9 |
26 | 23, 25 | syl 16 | . . . . . . . 8 |
27 | 26 | com12 31 | . . . . . . 7 |
28 | 27 | imim2i 14 | . . . . . 6 |
29 | fveq2 5871 | . . . . . . . . 9 | |
30 | 29 | breq1d 4462 | . . . . . . . 8 |
31 | 23, 30 | syl5ibr 221 | . . . . . . 7 |
32 | 31 | a1i 11 | . . . . . 6 |
33 | 28, 32 | jaod 380 | . . . . 5 |
34 | 19, 33 | syl5 32 | . . . 4 |
35 | 34 | com3r 79 | . . 3 |
36 | limuni 4943 | . . . . . . 7 | |
37 | 36 | eleq2d 2527 | . . . . . 6 |
38 | eluni2 4253 | . . . . . 6 | |
39 | 37, 38 | syl6bb 261 | . . . . 5 |
40 | r19.29 2992 | . . . . . . 7 | |
41 | fvex 5881 | . . . . . . . . . . 11 | |
42 | 41 | a1i 11 | . . . . . . . . . 10 |
43 | ssiun2 4373 | . . . . . . . . . . 11 | |
44 | vex 3112 | . . . . . . . . . . . . 13 | |
45 | r1lim 8211 | . . . . . . . . . . . . 13 | |
46 | 44, 45 | mpan 670 | . . . . . . . . . . . 12 |
47 | 46 | sseq2d 3531 | . . . . . . . . . . 11 |
48 | 43, 47 | syl5ibr 221 | . . . . . . . . . 10 |
49 | ssdomg 7581 | . . . . . . . . . 10 | |
50 | 42, 48, 49 | sylsyld 56 | . . . . . . . . 9 |
51 | id 22 | . . . . . . . . . . 11 | |
52 | 51 | imp 429 | . . . . . . . . . 10 |
53 | sdomdomtr 7670 | . . . . . . . . . . 11 | |
54 | 53 | expcom 435 | . . . . . . . . . 10 |
55 | 52, 54 | syl5 32 | . . . . . . . . 9 |
56 | 50, 55 | syl6 33 | . . . . . . . 8 |
57 | 56 | rexlimdv 2947 | . . . . . . 7 |
58 | 40, 57 | syl5 32 | . . . . . 6 |
59 | 58 | expcomd 438 | . . . . 5 |
60 | 39, 59 | sylbid 215 | . . . 4 |
61 | 60 | com23 78 | . . 3 |
62 | 4, 8, 12, 16, 18, 35, 61 | tfinds 6694 | . 2 |
63 | 62 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 cvv 3109
C_ wss 3475 c0 3784 ~P cpw 4012 U. cuni 4249
U_ ciun 4330 class class class wbr 4452
con0 4883 Lim wlim 4884 suc csuc 4885
` cfv 5593 cdom 7534 csdm 7535 cr1 8201 |
This theorem is referenced by: r111 8214 smobeth 8982 r1tskina 9181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-r1 8203 |
Copyright terms: Public domain | W3C validator |