![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r1suc | Unicode version |
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
Ref | Expression |
---|---|
r1suc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1sucg 8208 | . 2 | |
2 | r1fnon 8206 | . . . 4 | |
3 | fndm 5685 | . . . 4 | |
4 | 2, 3 | ax-mp 5 | . . 3 |
5 | 4 | eqcomi 2470 | . 2 |
6 | 1, 5 | eleq2s 2565 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 ~P cpw 4012 con0 4883 suc csuc 4885 dom cdm 5004
Fn wfn 5588 ` cfv 5593 cr1 8201 |
This theorem is referenced by: r1sdom 8213 r1sssuc 8222 tz9.12lem3 8228 rankval2 8257 rankpwi 8262 dfac12lem2 8545 dfac12r 8547 ackbij2lem2 8641 ackbij2lem3 8642 wunr1om 9118 r1wunlim 9136 tskr1om 9166 inar1 9174 inatsk 9177 grur1a 9218 grothomex 9228 rankeq1o 29828 elhf2 29832 0hf 29834 aomclem1 31000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-recs 7061 df-rdg 7095 df-r1 8203 |
Copyright terms: Public domain | W3C validator |