![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r1wunlim | Unicode version |
Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
r1wunlim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . . . . . 7 | |
2 | 1 | wun0 9117 | . . . . . 6 |
3 | elfvdm 5897 | . . . . . 6 | |
4 | 2, 3 | syl 16 | . . . . 5 |
5 | r1fnon 8206 | . . . . . 6 | |
6 | fndm 5685 | . . . . . 6 | |
7 | 5, 6 | ax-mp 5 | . . . . 5 |
8 | 4, 7 | syl6eleq 2555 | . . . 4 |
9 | eloni 4893 | . . . 4 | |
10 | 8, 9 | syl 16 | . . 3 |
11 | n0i 3789 | . . . . . 6 | |
12 | 2, 11 | syl 16 | . . . . 5 |
13 | fveq2 5871 | . . . . . 6 | |
14 | r10 8207 | . . . . . 6 | |
15 | 13, 14 | syl6eq 2514 | . . . . 5 |
16 | 12, 15 | nsyl 121 | . . . 4 |
17 | suceloni 6648 | . . . . . . . 8 | |
18 | 8, 17 | syl 16 | . . . . . . 7 |
19 | sucidg 4961 | . . . . . . . 8 | |
20 | 8, 19 | syl 16 | . . . . . . 7 |
21 | r1ord 8219 | . . . . . . 7 | |
22 | 18, 20, 21 | sylc 60 | . . . . . 6 |
23 | r1elwf 8235 | . . . . . 6 | |
24 | wfelirr 8264 | . . . . . 6 | |
25 | 22, 23, 24 | 3syl 20 | . . . . 5 |
26 | simprr 757 | . . . . . . . . 9 | |
27 | 26 | fveq2d 5875 | . . . . . . . 8 |
28 | r1suc 8209 | . . . . . . . . 9 | |
29 | 28 | ad2antrl 727 | . . . . . . . 8 |
30 | 27, 29 | eqtrd 2498 | . . . . . . 7 |
31 | simplr 755 | . . . . . . . 8 | |
32 | 8 | adantr 465 | . . . . . . . . 9 |
33 | sucidg 4961 | . . . . . . . . . . 11 | |
34 | 33 | ad2antrl 727 | . . . . . . . . . 10 |
35 | 34, 26 | eleqtrrd 2548 | . . . . . . . . 9 |
36 | r1ord 8219 | . . . . . . . . 9 | |
37 | 32, 35, 36 | sylc 60 | . . . . . . . 8 |
38 | 31, 37 | wunpw 9106 | . . . . . . 7 |
39 | 30, 38 | eqeltrd 2545 | . . . . . 6 |
40 | 39 | rexlimdvaa 2950 | . . . . 5 |
41 | 25, 40 | mtod 177 | . . . 4 |
42 | ioran 490 | . . . 4 | |
43 | 16, 41, 42 | sylanbrc 664 | . . 3 |
44 | dflim3 6682 | . . 3 | |
45 | 10, 43, 44 | sylanbrc 664 | . 2 |
46 | r1limwun 9135 | . 2 | |
47 | 45, 46 | impbida 832 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 E. wrex 2808
c0 3784 ~P cpw 4012 U. cuni 4249
Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
dom cdm 5004 " cima 5007 Fn wfn 5588
` cfv 5593 cr1 8201
cwun 9099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-reg 8039 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 df-wun 9101 |
Copyright terms: Public domain | W3C validator |