MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2exOLD Unicode version

Theorem r2exOLD 2981
Description: Obsolete proof of r2ex 2980 as of 10-Jan-2020. (Contributed by NM, 11-Nov-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
r2exOLD
Distinct variable groups:   ,   ,

Proof of Theorem r2exOLD
StepHypRef Expression
1 nfcv 2619 . 2
21r2exf 2978 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  E.wex 1612  e.wcel 1818  E.wrex 2808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813
  Copyright terms: Public domain W3C validator