Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2exfOLD Unicode version

Theorem r2exfOLD 2979
 Description: Obsolete proof of r2exf 2978 as of 10-Jan-2020. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
r2exf.1
Assertion
Ref Expression
r2exfOLD
Distinct variable group:   ,

Proof of Theorem r2exfOLD
StepHypRef Expression
1 df-rex 2813 . 2
2 r2exf.1 . . . . . 6
32nfcri 2612 . . . . 5
4319.42 1972 . . . 4
5 anass 649 . . . . 5
65exbii 1667 . . . 4
7 df-rex 2813 . . . . 5
87anbi2i 694 . . . 4
94, 6, 83bitr4i 277 . . 3
109exbii 1667 . 2
111, 10bitr4i 252 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  /\wa 369  E.wex 1612  e.wcel 1818  F/_wnfc 2605  E.wrex 2808 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813
 Copyright terms: Public domain W3C validator