![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > r3al | Unicode version |
Description: Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) |
Ref | Expression |
---|---|
r3al |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r2al 2835 | . 2 | |
2 | 19.21v 1729 | . . . 4 | |
3 | df-3an 975 | . . . . . . 7 | |
4 | 3 | imbi1i 325 | . . . . . 6 |
5 | impexp 446 | . . . . . 6 | |
6 | 4, 5 | bitri 249 | . . . . 5 |
7 | 6 | albii 1640 | . . . 4 |
8 | df-ral 2812 | . . . . 5 | |
9 | 8 | imbi2i 312 | . . . 4 |
10 | 2, 7, 9 | 3bitr4ri 278 | . . 3 |
11 | 10 | 2albii 1641 | . 2 |
12 | 1, 11 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 A. wal 1393
e. wcel 1818 A. wral 2807 |
This theorem is referenced by: pocl 4812 dfwe2 6617 isass 25318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-ex 1613 df-ral 2812 |
Copyright terms: Public domain | W3C validator |