MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raaanv Unicode version

Theorem raaanv 3938
Description: Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.)
Assertion
Ref Expression
raaanv
Distinct variable groups:   ,   ,   , ,

Proof of Theorem raaanv
StepHypRef Expression
1 rzal 3931 . . 3
2 rzal 3931 . . 3
3 rzal 3931 . . 3
4 pm5.1 857 . . 3
51, 2, 3, 4syl12anc 1226 . 2
6 r19.28zv 3924 . . . 4
76ralbidv 2896 . . 3
8 r19.27zv 3929 . . 3
97, 8bitrd 253 . 2
105, 9pm2.61ine 2770 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  =wceq 1395  =/=wne 2652  A.wral 2807   c0 3784
This theorem is referenced by:  reusv3i  4659  f1mpt  6169  isclo2  19589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-v 3111  df-dif 3478  df-nul 3785
  Copyright terms: Public domain W3C validator