MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabab Unicode version

Theorem rabab 3127
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rabab

Proof of Theorem rabab
StepHypRef Expression
1 df-rab 2816 . 2
2 vex 3112 . . . 4
32biantrur 506 . . 3
43abbii 2591 . 2
51, 4eqtr4i 2489 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442  {crab 2811   cvv 3109
This theorem is referenced by:  notab  3767  intmin2  4314  euen1  7605  cardf2  8345  hsmex2  8834  imageval  29580  rmxyelqirr  30846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-rab 2816  df-v 3111
  Copyright terms: Public domain W3C validator