MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbidva2 Unicode version

Theorem rabbidva2 3099
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Hypothesis
Ref Expression
rabbidva2.1
Assertion
Ref Expression
rabbidva2
Distinct variable group:   ,

Proof of Theorem rabbidva2
StepHypRef Expression
1 rabbidva2.1 . . 3
21abbidv 2593 . 2
3 df-rab 2816 . 2
4 df-rab 2816 . 2
52, 3, 43eqtr4g 2523 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442  {crab 2811
This theorem is referenced by:  extmptsuppeq  6943  dfac2a  8531  hashbclem  12501  isusgra0  24347  wwlkn0s  24705  wwlkextwrd  24728  rusgranumwlkl1  24947  rusgranumwlklem3  24951  numclwwlkovf2  25084  orvcgteel  28406  orvclteel  28411  mapdvalc  37356  mapdval4N  37359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-rab 2816
  Copyright terms: Public domain W3C validator