MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbidva2 Unicode version

Theorem rabbidva2 3071
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Hypothesis
Ref Expression
rabbidva2.1
Assertion
Ref Expression
rabbidva2
Distinct variable group:   ,

Proof of Theorem rabbidva2
StepHypRef Expression
1 rabbidva2.1 . . 3
21abbidv 2590 . 2
3 df-rab 2809 . 2
4 df-rab 2809 . 2
52, 3, 43eqtr4g 2520 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1370  e.wcel 1758  {cab 2439  {crab 2804
This theorem is referenced by:  orvcgteel  27306  orvclteel  27311  wwlkn0s  31216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-rab 2809
  Copyright terms: Public domain W3C validator