MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqbidva Unicode version

Theorem rabeqbidva 3077
Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
rabeqbidva.1
rabeqbidva.2
Assertion
Ref Expression
rabeqbidva
Distinct variable groups:   ,   ,   ,

Proof of Theorem rabeqbidva
StepHypRef Expression
1 rabeqbidva.2 . . 3
21rabbidva 3072 . 2
3 rabeqbidva.1 . . 3
4 rabeq 3075 . . 3
53, 4syl 16 . 2
62, 5eqtrd 2495 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1370  e.wcel 1758  {crab 2804
This theorem is referenced by:  natpropd  15045  gsumpropd2lem  15664  eengv  23694  elntg  23699  fourierdlem79  30715  fourierdlem110  30746  domnmsuppn0  31650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2805  df-rab 2809
  Copyright terms: Public domain W3C validator